Rate variation among nuclear genes and the age of polyploidy in Gossypium.

نویسندگان

  • David S Senchina
  • Ines Alvarez
  • Richard C Cronn
  • Bao Liu
  • Junkang Rong
  • Richard D Noyes
  • Andrew H Paterson
  • Rod A Wing
  • Thea A Wilkins
  • Jonathan F Wendel
چکیده

Molecular evolutionary rate variation in Gossypium (cotton) was characterized using sequence data for 48 nuclear genes from both genomes of allotetraploid cotton, models of its diploid progenitors, and an outgroup. Substitution rates varied widely among the 48 genes, with silent and replacement substitution levels varying from 0.018 to 0.162 and from 0.000 to 0.073, respectively, in comparisons between orthologous Gossypium and outgroup sequences. However, about 90% of the genes had silent substitution rates spanning a more narrow threefold range. Because there was no evidence of rate heterogeneity among lineages for any gene and because rates were highly correlated in independent tests, evolutionary rate is inferred to be a property of each gene or its genetic milieu rather than the clade to which it belongs. Evidence from approximately 200,000 nucleotides (40,000 per genome) suggests that polyploidy in Gossypium led to a modest enhancement in rates of nucleotide substitution. Phylogenetic analysis for each gene yielded the topology expected from organismal history, indicating an absence of gene conversion or recombination among homoeologs subsequent to allopolyploid formation. Using the mean synonymous substitution rate calculated across the 48 genes, allopolyploid cotton is estimated to have formed circa 1.5 million years ago (MYA), after divergence of the diploid progenitors about 6.7 MYA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation.

Here, we describe the evolution of gene expression among a diversified cohort of five allopolyploid species in the cotton genus (Gossypium). Using this phylogenetic framework and comparisons with expression changes accompanying F(1) hybridization, we provide a temporal perspective on expression diversification following a shared genome duplication. Global patterns of gene expression were studie...

متن کامل

Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes.

It is often anticipated that many of today's diploid plant species are in fact paleopolyploids. Given that an ancient large-scale duplication will result in an excess of relatively old duplicated genes with similar ages, we analyzed the timing of duplication of pairs of paralogous genes in 14 model plant species. Using EST contigs (unigenes), we identified pairs of paralogous genes in each spec...

متن کامل

Estimation of genetic parameters for quantitative and qualitative traits in cotton cultivars (Gossypium hirsutum L. & Gossypium barbadense L.) and new scaling test of additive– dominance model

A complete diallel cross of nine cotton genotypes (Gossypium hirsutum L. & Gossypium barbadense L.) viz Delinter, Sindose-80, Omoumi, Bulgare-539, Termez-14, Red leaf (Native species), B-557, Brown fiber and Siokra-324 having diverse genetic origins was conducted over two years to determine the potential for the improvement of yield, its components, oil and fiber qual...

متن کامل

Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.).

Cytosine methylation is important in the epigenetic regulation of gene expression and development in plants and has been implicated in silencing duplicate genes after polyploid formation in several plant groups. Relatively little information exists, however, on levels and patterns of methylation polymorphism (MP) at homologous loci within species. Here we explored the levels and patterns of met...

متن کامل

COMPARISON OF DNA MARKER ORDER AND FLORAL TRAIT EVOLUTION AMONG DIPLOID AND TETRAPLOID GENOMES OF GOSSYPIUM by APARNA DESAI

Scientific information on the A genome species of Gossypium is limited due to their decline as crop species and low levels of marker polymorphism. As the A subgenome of the allotetraploid species of Gossypium is contributed by A genome progenitors, studies on the A genome will help us understand the evolution of polyploids. We compared DNA marker order along the chromosomes of A, D and At genom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2003